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1. INTRODUCTION 

The binary quadratic diophantine equations (both 

homogeneous and non homogeneous) are rich in variety [1-6]. 

In [7-18] the binary quadratic non-homogeneous equations 

representing hyperbolas are studied for their non–zero integral 

solutions. These results have motivated us to search for 

infinitely many non-zero integral solutions of the binary 

quadratic equation given by 0219 22  xyxyx . The 

recurrence relations satisfied by the solutions x and y are 

given. Also a few interesting properties among the solutions 

are exhibited.
                                               

 

2. METHOD OF ANALYSIS 

The diophantine equation representing the binary quadratic 

equation to be solved for its non-zero distinct integral 

solutions  is 

0219 22  xyxyx                                (1) 

Note that (1) is satisfied by the following non-zero distinct 

integer pair 

                (3, 3), (-21,-189), (-1701,-189) 

However, we have two more patterns of solutions for (1), 

which are illustrated below: 

Pattern: I 

Solving (1) for y: 

2

)21(4819 22 xxxx
y


                 (2)                             

Let 2x X                                                                         (3) 

Then    XXxy 42779 2                                     (4) 

Assuming       
22 4277  XX                                (5) 

(4)  becomes   Xy 9                                                  (6) 

(5) is written as                       

 
222 2177  S                          (7)                                                  

where    2177  XS                                                       (8) 

Now, consider the Pellian equation 

 177 22  S                                                   (9) 
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Thus, the general solution  ,n nS   of (7) is obtained as 

 11 )7740351()7740351(
2

21   nn

nS  (10)            

  .....2,1,0,)7740351()7740351(
772

21 11   nnn

n (11)       

In view of (3), (8) and (10), we have 
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3 n
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f
x                                               (12) 
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where   

 
11 )7740351()7740351(   nn

nf           (13) 

Again, in view of (3), (6) and (11), we have 
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where  

  
11 )7740351()7740351(   nn

ng         (15) 

Our aim is to get integer solutions to (1), which is obtained 

for 0,2,4,....n 
 

Hence, we have 
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where  

1212
2 )7740351()7740351(   nn
nF

 
 (18)  

1212

2 )7740351()7740351(   nn

nG       (19) 

Equations (16) and (17) together will give the distinct integral 

solutions of (1). 

The above values of 2nx  and 2ny  satisfy respectively the 

following recurrence relations         

 268800492802 22242   nnn xxx                  (20)     

1209600492802 22242   nnn yyy                 (21) 

A few numerical examples are given below 

A few interesting relations among the solutions are 

presented below.  

1. The values of   x, y both are positive and even. 

2. )24(mod022  nn yx  

3. )27(mod022  nn yx  

4. 134400631956160 2222  nnn xyx  

5. 119448056160499121 2222  nnn xyy  

6. 537600492801492800 42222   nnn xxx  

7. 2420880492801492800 42222   nnn yyy    

8. The following expressions are nasty numbers 

    i)  42222 492801492800126   nnn xxx  

    ii)  nnnnnn yxxyyx 2222224242 )(49280218    

9. If ),( 00 yx be any given solution to (1), then    

    )3,3( 00 xy  is also a solution to (1). 

3. REMARKABLE OBSERVATIONS 

1) By considering suitable linear transformations between the 

solutions of (1), one may get integer solutions for the 

hyperbola.                                                             

Example 1: 

 Define   611 2  nxX ,  nn xyY 22 9922   

 Note that the pair (X, Y) satisfies the hyperbola     

              277277 22  XY  

 By considering suitable linear transformations between the 

solutions of (1), one may get integer solutions for parabola. 

Example 2:  

Define    611 2  nxX , nn xyY 22 9922   

Note that the pair (X, Y) satisfies the parabola   

                     27722312  XY    

Pattern II: 

Solving (1) for x        

 )44137877)219(
2

1 2  yyyx               (22)                      

n 
nx2  ny2  

0 192 1704, 

24 

1 94348992 838524984, 

10615944 

2 46495371686592 413226787953864, 

5231557225464 
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Let    44137877 22  yy  

Multiplying the above equation by 77 on both sides and 

performing a few calculations, we have                                             

             176477 22  S                                       (23) 

where    18977  yS                                               (24) 

The positive integer solution of (23) is 

                        189,21 00  S  

Now to find the other solution of (23), consider the Pellian 

equation 

        177 22  S                                                   (25) 

Whose fundamental solution is  

                       )351,40()
~

,
~

( 00 S  

The other solutions of (25) can be derived from the relations 

                      
2

~ n
n

f
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n

g
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Where        
11 )7740351()7740351(   nn

nf  

11 )7740351()7740351(   nn

ng  

Applying the lemma of Brahmagupta 

between )
~

,
~

(&),( 00 nn SS  , the other solutions of (23) 

can be obtained from the relations            

nnn gf
772

189

2

21
1                                            (26)  

)7721189(
2

1
1 nnn gfS                                   (27) 

Taking positive sign on the R.H.S of (22) and using (24), (26) 

& (27), the non-zero distinct integer solutions of the 

hyperbola (1) are obtained as follows       



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



  nnnn gfyx
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2

1
11           (28)             

 9779
11

3
y 1n  nn gf , n=-2, 0, 2 ...             (29) 

 

The recurrence relations satisfied by 11,  nn yx   are 

respectively 

         268800492802 135   nnn xxx  

        1209600492802 135   nnn yyy
 

A few numerical examples are presented in the table below 

n 
1nx  1ny  

-2 3, 

192 

24 

0 15123, 

192 

1704 

2 7452375843, 

94348992 

838524984 

4 367254571989816, 

46495371686592 

413226787953864 

 

A few interesting relations among the solutions are 

presented below.  

1)  The values of   x, y both are positive. 

2)  )3(mod011   nn yx   

3)  13440056160499121 113   nnn yxx  

4)  15120631956160 113   nnn yxy  

5)  119448049912156160 133   nnn yyx  

6)  134400561606319 133   nnn xyx  

7)   







 )4741221198(

6

1
3474332233198

6

1
nxnynxny     

    is a cubic integer. 

8) 18  113355 )(492802   nnnnnn yxxyyx    

     is a nasty number. 

4. REMARKABLE OBSERVATIONS 

1) By considering suitable linear transformations between the 

solutions of (1), one may get integer solutions for the 

hyperbola. 
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Example 3: 

 Define 47422198 11   nn xyX  ,    

            41581738198 11   nn yxY   

Note that the pair (X, Y) satisfies the hyperbola  

              1108877 22  XY                          

 By considering suitable linear transformations between the 

solutions of (1), one may get integer solutions for parabola. 

Example 4: 

Define 47422198 11   nn xyX ,  

           41581738198 11   nn yxY   

 Note that the pair (X, Y) satisfies the parabola  

                 1108862  XY    

5. CONCLUSION 

In this paper, we have made an attempt to obtain a complete 

set of non-trivial distinct solutions for the Non-homogeneous 

binary quadratic equation. To conclude, one may search for 

other choices of solutions to the considered binary equation 

and further, quadratic equations with multi-variables. 
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